Non-Reversible Parallel Tempering on Optimized Paths

Saifuddin Syed
UBC Statistics

ArXiv:
1905.02939
2102.07720

Motivation

Have some data x, want to infer some unknown parameter θ with posterior

Motivation

Have some data x, want to infer some unknown parameter θ with posterior

$$
p(\theta \mid x)=\frac{1}{p(x)} p(x \mid \theta) p(\theta)
$$

Motivation

Have some data x, want to infer some unknown parameter θ with posterior

$$
p(\theta \mid x)=\frac{1}{p(x)} p(x \mid \theta) p(\theta)
$$

Major Challenge: compute posterior expectations $\mathbb{E}[f(\theta) \mid x]$

Markov Chain Monte Carlo

Markov Chain Monte Carlo

Run a Markov chain whose stationary distribution is the target

Markov Chain Monte Carlo

Run a Markov chain whose stationary distribution is the target

Markov Chain Monte Carlo

Run a Markov chain whose stationary distribution is the target

Slow convergence to complex, high-dimensional, multi-modal targets

Slow convergence to complex, high-dimensional, multi-modal targets

Slow convergence to complex, high-dimensional, multi-modal targets

Slow convergence to complex, high-dimensional, multi-modal targets

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

reference
(eg. Prior)

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

reference (eg. Prior)

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

reference

(eg. Prior)

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

Annealing path: π_{t}

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

Annealing path: π_{t}
Schedule:

$$
t_{0}, \ldots, t_{N} \in[0,1]
$$

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

Annealing path: π_{t}
Schedule: $\quad t_{0}, \ldots, t_{N} \in[0,1]$
Reference:
π_{0}

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

Annealing path: π_{t}
Schedule:
$t_{0}, \ldots, t_{N} \in[0,1]$
Reference:
π_{0}
Target:
π_{1}

Parallel Tempering

Key Idea: sample from a path of distributions, swap states along the path

$\pi_{t_{n}}$
$\pi_{t_{n+1}}$

Local Exploration: apply any MCMC update to each chain (eg. HMC, Langevin, MH, etc.)

$$
\pi_{t_{n}}
$$

$\pi_{t_{n+1}}$

Local Exploration: apply any MCMC update to each chain (eg. HMC, Langevin, MH, etc.)
$\pi_{t_{n}}$
$\pi_{t_{n+1}}$

Local Exploration: apply any MCMC update to each chain (eg. HMC, Langevin, MH, etc.)

Local Exploration: apply any MCMC update to each chain (problem specific)

Communication: MetropolisHastings move to swap the states of adjacent chains with probability α_{n}

$$
\alpha_{n}=1 \wedge \frac{\pi_{t_{n}}\left(x_{n+1}\right) \pi_{t_{n+1}}\left(x_{n}\right)}{\pi_{t_{n+1}}\left(x_{n+1}\right) \pi_{t_{n}}\left(x_{n}\right)}
$$

Local Exploration: apply any MCMC update to each chain (problem specific)

Communication: MetropolisHastings move to swap the states of adjacent chains with probability α_{n}

$$
\alpha_{n}=1 \wedge \frac{\pi_{t_{n}}\left(x_{n+1}\right) \pi_{t_{n+1}}\left(x_{n}\right)}{\pi_{t_{n+1}}\left(x_{n+1}\right) \pi_{t_{n}}\left(x_{n}\right)}
$$

Local Exploration: apply any MCMC update to each chain (problem specific)

Communication: MetropolisHastings move to swap the states of adjacent chains with probability α_{n}

$$
\alpha_{n}=1 \wedge \frac{\pi_{t_{n}}\left(x_{n+1}\right) \pi_{t_{n+1}}\left(x_{n}\right)}{\pi_{t_{n+1}}\left(x_{n+1}\right) \pi_{t_{n}}\left(x_{n}\right)}
$$

Round trips

How to assess the performance of PT?
ESS etc influenced by exploration; want to evaluate communication

Round trips

How to assess the performance of PT?
ESS etc influenced by exploration; want to evaluate communication
Round Trip: when a reference state makes it to the target and back

Round trips

How to assess the performance of PT?
ESS etc influenced by exploration; want to evaluate communication
Round Trip: when a reference state makes it to the target and back

Round Trip Rate: the frequency of round trips

Non-Reversible Parallel Tempering (NRPT)

Deterministically alternate between even and odd, ... [OKO+01]

Non-Reversible Parallel Tempering (NRPT)

Deterministically alternate between even and odd, ... [OKO+01]

Non-Reversible Parallel Tempering (NRPT)

Deterministically alternate between even and odd, ... [OKO+01]

Non-Reversible Parallel Tempering (NRPT)

Deterministically alternate between even and odd, ... [OKO+01]

Non-Reversible Parallel Tempering (NRPT)

Deterministically alternate between even and odd, ... [OKO+01]

- NRPT eliminates diffusive behaviour provides optimal round trip rate for a given path [SBD+19, JRSS-B]

- [SBD+19] derives a robust and efficient algorithm to find optimal annealing schedule for a given path

Bayesian Mixture Model ($\mathrm{d}=305$)

Ising Model $(\mathrm{d}=25)$

Copy number inference ($\mathrm{d}=30$)

- Whole genome ovarian cancer data

ODE parameter inference ($\mathrm{d}=5$)

- mRNA data

Copy number inference ($\mathrm{d}=30$)

- Whole genome ovarian cancer data

1 Chain
Reversible PT
Non-Reversible PT

Event horizon telescope collaboration (EHT) used NRPT process original photo from 3 days to 1 hour with higher confidence

Recently EHT used NRPT to discover magnetic polarization in the M87 blackhole!

BC Cancer Research Center used NRPT to improve phylogenetic inference of single cell cancer data by order of 400x [DSC+20]

Communication barrier for a fixed path

Recall: swap probability
$\alpha_{n}=1 \wedge \frac{\pi_{t_{n}}\left(x_{n+1}\right) \pi_{t_{n+1}}\left(x_{n}\right)}{\pi_{t_{n+1}}\left(x_{n+1}\right) \pi_{t_{n}}\left(x_{n}\right)}$

Communication barrier for a fixed path

Recall: swap probability
$\alpha_{n}=1 \wedge \frac{\pi_{t_{n}}\left(x_{n+1}\right) \pi_{t_{n+1}}\left(x_{n}\right)}{\pi_{t_{n+1}}\left(x_{n+1}\right) \pi_{t_{n}}\left(x_{n}\right)}$

Rejection Rate

$$
\begin{gathered}
r_{n}=1-\mathbb{E}\left[\alpha_{n}\right] \\
\left(X_{n}, X_{n+1}\right) \sim \pi_{t_{n}} \cdot \pi_{t_{n+1}}
\end{gathered}
$$

Communication barrier for a fixed path

Recall: swap probability

$$
\alpha_{n}=1 \wedge \frac{\pi_{t_{n}}\left(x_{n+1}\right) \pi_{t_{n+1}}\left(x_{n}\right)}{\pi_{t_{n+1}}\left(x_{n+1}\right) \pi_{t_{n}}\left(x_{n}\right)}
$$

Rejection Rate

$$
\begin{gathered}
r_{n}=1-\mathbb{E}\left[\alpha_{n}\right] \\
\left(X_{n}, X_{n+1}\right) \sim \pi_{t_{n}} \cdot \pi_{t_{n+1}}
\end{gathered}
$$

Theorem:

The round trip rate is equal to
$\tau_{N}=\left(2+2 \sum_{n=0}^{N-1} \frac{r_{n}}{1-r_{n}}\right)^{-1}$

Communication barrier for a fixed path

Recall: swap probability

$$
\alpha_{n}=1 \wedge \frac{\pi_{t_{n}}\left(x_{n+1}\right) \pi_{t_{n+1}}\left(x_{n}\right)}{\pi_{t_{n+1}}\left(x_{n+1}\right) \pi_{t_{n}}\left(x_{n}\right)}
$$

Rejection Rate

$$
\begin{gathered}
r_{n}=1-\mathbb{E}\left[\alpha_{n}\right] \\
\left(X_{n}, X_{n+1}\right) \sim \pi_{t_{n}} \cdot \pi_{t_{n+1}}
\end{gathered}
$$

Theorem:

The round trip rate is equal to
$\tau_{N}=\left(2+2 \sum_{n=0}^{N-1} \frac{r_{n}}{1-r_{n}}\right)^{-1}$
and in the limit of parallel computation, $N \rightarrow \infty$,

$$
\tau_{N} \rightarrow(2+2 \Lambda)^{-1}
$$

Λ is the global communication barrier

Communication barrier for a fixed path

Recall: swap probability

$$
\alpha_{n}=1 \wedge \frac{\pi_{t_{n}}\left(x_{n+1}\right) \pi_{t_{n+1}}\left(x_{n}\right)}{\pi_{t_{n+1}}\left(x_{n+1}\right) \pi_{t_{n}}\left(x_{n}\right)}
$$

Rejection Rate

$$
\begin{gathered}
r_{n}=1-\mathbb{E}\left[\alpha_{n}\right] \\
\left(X_{n}, X_{n+1}\right) \sim \pi_{t_{n}} \cdot \pi_{t_{n+1}}
\end{gathered}
$$

Theorem:

The round trip rate is equal to

$$
\tau_{N}=\left(2+2 \sum_{n=0}^{N-1} \frac{r_{n}}{1-r_{n}}\right)^{-1}
$$

and in the limit of parallel computation, $N \rightarrow \infty$,

$$
\tau_{N} \rightarrow(2+2 \Lambda)^{-1} \quad \Lambda \approx \sum_{n} r_{n}
$$

Λ is the global communication barrier

A Breakdown in Communication

reference and target are nearly mutually singular global communication barrier Λ is large!

$$
\Lambda \approx \sum_{n} r_{n}
$$

A Breakdown in Communication

reference and target are nearly mutually singular global communication barrier Λ is large!

$$
\Lambda \approx \sum_{n} r_{n}
$$

not much overlap between distributions $\mathrm{n}, \mathrm{n}+1$

A Breakdown in Communication

reference and target are nearly mutually singular global communication barrier Λ is large!

not much overlap between distributions $\mathrm{n}, \mathrm{n}+1$

Bad for Bayes: prior (reference) and posterior (target) often nearly mutually singular

A Breakdown in Communication

reference and target are nearly mutually singular global communication barrier Λ is large!

$$
\Lambda \approx \sum_{n} r_{n}
$$

Linear Path $\pi_{t} \propto \pi_{0}^{1-t} \cdot \pi_{1}^{t}$

not much overlap between distributions $\mathrm{n}, \mathrm{n}+1$

Bad for Bayes: prior (reference) and posterior (target) often nearly mutually singular
Is this problem just fundamentally hard?

Empirical Performance

Empirical Performance

Empirical Performance

No round trips after 50K steps...
(not to mention upper bound of $\sim 100 \ldots$...)

Can we do better...?

Can we do better...?

e.g. Gaussian ref \& target

$$
z=\left|\mu_{0}-\mu_{1}\right| / \sigma
$$

Proposition:

Can we do better...?

- the linear path has $\Lambda=\Theta(z)$

$$
z=\left|\mu_{0}-\mu_{1}\right| / \sigma
$$

Proposition:

Can we do better...?

- the linear path has $\Lambda=\Theta(z)$
e.g. Gaussian ref \& target

$$
z=\left|\mu_{0}-\mu_{1}\right| / \sigma
$$

we can do at least exponentially better than the standard linear path!

Proposition:

Can we do better...?

- the linear path has $\Lambda=\Theta(z)$

$$
z=\left|\mu_{0}-\mu_{1}\right| / \sigma
$$

- there exists a path of Gaussians with $\Lambda=O(\log z)$

we can do at least exponentially better than the standard linear path!

Exponential Path Family

What kinds of path families should we consider in practice?

Exponential Path Family

What kinds of path families should we consider in practice?

1. Shouldn't be specific to a particular reference, target (e.g. $\pi_{t} \propto \pi_{0}^{1-t} \cdot \pi_{1}^{t}$)

Exponential Path Family

What kinds of path families should we consider in practice?

1. Shouldn't be specific to a particular reference, target (e.g. $\pi_{t} \propto \pi_{0}^{1-t} \cdot \pi_{1}^{t}$)
2. Should include the linear path

Exponential Path Family

What kinds of path families should we consider in practice?

1. Shouldn't be specific to a particular reference, target (e.g. $\pi_{t} \propto \pi_{0}^{1-t} \cdot \pi_{1}^{t}$)
2. Should include the linear path
3. Should deform reference to target while maximizing overlap

Exponential Path Family

What kinds of path families should we consider in practice?

1. Shouldn't be specific to a particular reference, target (e.g. $\pi_{t} \propto \pi_{0}^{1-t} \cdot \pi_{1}^{t}$)
2. Should include the linear path
3. Should deform reference to target while maximizing overlap

- Family of paths: $\pi_{t} \propto \pi_{0}^{\eta_{0}(t)} \pi_{1}^{\eta_{1}(t)}$

Piecewise twice continuously differentiable functions: $\eta:[0,1] \rightarrow \mathbb{R}^{2}$

Exponential Path Family

What kinds of path families should we consider in practice?

1. Shouldn't be specific to a particular reference, target (e.g. $\pi_{t} \propto \pi_{0}^{1-t} \cdot \pi_{1}^{t}$)
2. Should include the linear path
3. Should deform reference to target while maximizing overlap

- Family of paths: $\pi_{t} \propto \pi_{0}^{\eta_{0}(t)} \pi_{1}^{\eta_{1}(t)}$

Piecewise twice continuously differentiable functions: $\eta:[0,1] \rightarrow \mathbb{R}^{2}$
Designing path of densities \rightarrow designing a path in \mathbb{R}^{2}
which path?

Spline Path Family

Use a linear spline η with K knots

$$
\pi_{t} \propto \pi_{0}^{\eta_{0}(t)} \pi_{1}^{\eta_{1}(t)}
$$

Optimize knots with SDG

Spline Path Family

Use a linear spline η with K knots

$$
\pi_{t} \propto \pi_{0}^{\eta_{0}(t)} \pi_{1}^{\eta_{1}(t)}
$$

Optimize knots with SDG

Spline Path Family

Use a linear spline η with K knots

$$
\pi_{t} \propto \pi_{0}^{\eta_{0}(t)} \pi_{1}^{\eta_{1}(t)}
$$

Optimize knots with SDG

Spline Path Family

Use a linear spline η with K knots

$$
\pi_{t} \propto \pi_{0}^{\eta_{0}(t)} \pi_{1}^{\eta_{1}(t)}
$$

Optimize knots with SDG

Spline Path Family

Use a linear spline η with K knots

$$
\pi_{t} \propto \pi_{0}^{\eta_{0}(t)} \pi_{1}^{\eta_{1}(t)}
$$

Optimize knots with SDG

Gaussians

Ref: $N\left(-1,10^{-4}\right) \quad$ Tgt: $N\left(1,10^{-4}\right)$
red/green: linear path
black: best possible for linear path
blues: optimized spline path

Gaussians

Ref: $N\left(-1,10^{-4}\right) \quad$ Tgt: $N\left(1,10^{-4}\right)$
bedin

Beta-Binomial Model

Shapley Galaxy Data (d = 95)

Scaling with Dimension

Reference: $\mathcal{N}\left((-1, \ldots,-1), 10^{-2} I\right)$ Target: $\quad \mathcal{N}\left((1, \ldots, 1), 10^{-2} I\right)$ 50,000 scans, $15 \sqrt{d}$ chains

Scaling with Dimension

Reference: $\mathcal{N}\left((-1, \ldots,-1), 10^{-2} I\right)$ Target: $\quad \mathcal{N}\left((1, \ldots, 1), 10^{-2} I\right)$ 50,000 scans, $15 \sqrt{d}$ chains
problem gets harder

but benefit of using
optimized vs linear paths
actually increases

Conclusion

Conclusion

PT enables inference
with intractable, multimodal posteriors

Conclusion

PT enables inference
with intractable, multimodal posteriors

but the standard linear path has
suboptimal communication efficiency
Linear Path

Conclusion

PT enables inference with intractable, multimodal posteriors

but the standard linear path has suboptimal communication efficiency

Linear Path

Questions?

Asymptotic Round Trip Rate

What about asymptotics in N (increasing parallel threads)?
Theorem: $\tau_{N} \rightarrow(2+2 \Lambda)^{-1}$

Asymptotic Round Trip Rate

What about asymptotics in N (increasing parallel threads)?
Theorem: $\tau_{N} \rightarrow(2+2 \Lambda)^{-1}$
$\Lambda=\frac{1}{2} \int_{0}^{1} \mathbb{E}\left|\frac{\mathrm{~d} W_{t}}{\mathrm{~d} t}\left(X_{t}\right)-\frac{\mathrm{d} W_{t}}{\mathrm{~d} t}\left(X_{t}^{\prime}\right)\right| \mathrm{d} t$
$X_{t}, X_{t}^{\prime \text { i.i.d. }} \pi_{t}$

Asymptotic Round Trip Rate

What about asymptotics in N (increasing parallel threads)?
Theorem: $\tau_{N} \rightarrow(2+2 \Lambda)^{-1}$
$\begin{aligned} \Lambda & =\frac{1}{2} \int_{0}^{1} \mathbb{E}\left|\frac{\mathrm{~d} W_{t}}{\mathrm{~d} t}\left(X_{t}\right)-\frac{\mathrm{d} W_{t}}{\mathrm{~d} t}\left(X_{t}^{\prime}\right)\right| \mathrm{d} t \\ & X_{t}, X_{t}^{\prime \text { i.i.d. }} \pi_{t} \\ & \text { generalized communication barrier } \\ & \text { looks sort of like "path length" for PT! }\end{aligned}$

Asymptotic Round Trip Rate

What about asymptotics in N (increasing parallel threads)?

Theorem: $\tau_{N} \rightarrow(2+2 \Lambda)^{-1}$

$$
X_{t}, X_{t}^{\prime \text { i.i.d. }} \pi_{t}
$$

$X_{t}, X_{t}^{\prime \text { i.i.d. }} \pi_{t}$
generalized communication barrier looks sort of like "path length" for PT!

$$
\Lambda=\frac{1}{2} \int_{0}^{1} \mathbb{E}\left|\frac{\mathrm{~d} W_{t}}{\mathrm{~d} t}\left(X_{t}\right)-\frac{\mathrm{d} W_{t}}{\mathrm{~d} t}\left(X_{t}^{\prime}\right)\right| \mathrm{d} t
$$

In practice we use the path integral Λ_{N} on the linear spline (we only have discretized path)

Asymptotic Round Trip Rate

What about asymptotics in N (increasing parallel threads)?

Theorem: $\tau_{N} \rightarrow(2+2 \Lambda)^{-1}$
$\Lambda=\frac{1}{2} \int_{0}^{1} \mathbb{E}\left|\frac{\mathrm{~d} W_{t}}{\mathrm{~d} t}\left(X_{t}\right)-\frac{\mathrm{d} W_{t}}{\mathrm{~d} t}\left(X_{t}^{\prime}\right)\right| \mathrm{d} t$ $X_{t}, X_{t}^{\prime \text { i.i.d. }} \pi_{t}$
generalized communication barrier looks sort of like "path length" for PT!

In practice we use the path integral Λ_{N} on the linear spline (we only have discretized path)

the round trip rate gradient signal-to-noise ratio is often too low \& gradient noise heavy-tailed (especially in early iterations)

$$
\tau_{N}=\left(2+2 \sum_{n=0}^{N-1} \frac{r_{n}}{1-r_{n}}\right)^{-1}
$$

the round trip rate gradient signal-to-noise ratio is often too low \& gradient noise heavy-tailed (especially in early iterations)

$$
\tau_{N}=\left(2+2 \sum_{n=0}^{N-1} r_{1}^{-1}\right.
$$

the round trip rate gradient signal-to-noise ratio is often too low \& gradient noise heavy-tailed (especially in early iterations)

the round trip rate gradient signal-to-noise ratio is often too low \& gradient noise heavy-tailed (especially in early iterations)

e.g. Gaussian ref \& target

SKL has better gradient signal (early stages)
e.g. Gaussian ref \& target

SKL has better gradient signal (early stages)
e.g. Gaussian ref \& target

SKL has better gradient signal (early stages)
e.g. Gaussian ref \& target

could switch to optimizing the round trip rate in later iterations

SKL has better gradient signal (early stages)
e.g. Gaussian ref \& target

could switch to optimizing the round trip rate in later iterations

> we use the schedule tuning procedure from $[\mathrm{SBD}+19]$

Gaussians

Ref: $N\left(-1,10^{-4}\right) \quad$ Tgt: $N\left(1,10^{-4}\right)$
blue: 1 / (round trip rate)
orange: symmetric KL

